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Abstract

Virtual quark pair screening leads to breaking of the string between funda-

mental representation quarks in QCD. For unquenched four dimensional lattice

QCD, this (so far elusive) phenomenon is studied using the recently developed

truncated determinant algorithm (TDA). The dynamical con�gurations were

generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are

included exactly in these TDA studies performed at low quark mass on large

coarse (but O(a2) improved) lattices. A study of Wilson line correlators in

Coulomb gauge extracted from an ensemble of 1000 two-avor dynamical con-

�gurations reveals evidence for attening of the string tension at distances

R >
�

1 fm.
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1 Introduction

The behavior of the static energy of a quark-antiquark pair at large distance provides perhaps

the most striking qualitative di�erence between quenched and full QCD. In the quenched

theory virtual quark-antiquark pairs unconnected to external sources are neglected and

the string tension rises inde�nitely at large distance, whereas the full theory automati-

cally screens the quark-antiquark potential at large distances by populating the vacuum

with dynamical quark pairs. It is therefore not surprising that the demonstration of string

breaking has long been regarded as a classic bellwether for testing the e�cacy of dynam-

ical QCD algorithms. Unfortunately, despite numerous studies [1] and the expenditure of

a large amount of computational e�ort, the direct observation of string breaking in zero-

temperature 4-dimensional unquenched QCD, in which the string tension is seen to become

essentially at at large distances, has not yet been clearly established. On the other hand,

the phenomenon has been seen quite convincingly in lower dimensional gauge theories such

as QED2 [2], QCD3 [3], or in QCD4 at �nite temperature [4]. The expected softening

(though not attening) of the potential due to sea-quarks has also been seen in recent work

on three avor QCD [5].

The reasons suggested for the failure to observe a clear signal of string breaking in zero

temperature 4-dimensional QCD range from the inability to decouple the lowest energy

string states at the still rather small Euclidean time extents of the measured Wilson loops

[3, 6] to the existence of a completely new phase of the string in which breaking is completely

invisible [7]. In the former case, it has been suggested that use of an improved string operator

which suppresses appropriately the coupling of higher energy string states as the breaking

point is approached is a prerequisite for exposing the desired attening of the string tension

. The results that we present in this paper con�rm that string breaking only appears in

Wilson line correlators at su�ciently large Euclidean times, but demonstrate the breaking

directly at the level of unsmeared Wilson lines and without explicitly mixing in two-meson
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states [8] in the initial string state.

The three major di�erences between the simulations described here and previous studies

of stringbreaking are

1. We measure the static energy of Wilson lines in Coulomb gauge rather than the large

area behavior of Wilson loops. The Wilson line operator in Coulomb gauge has a

larger overlap with the lowest energy states of a static quark-antiquark source pair

than the Wilson loop. (In the case of abelian gauge theory, the overlap for the Wilson

line operator is perfect.)

2. We work on physically large coarse lattices, which allows us to go to large Euclidean

time (up to 1.2 fm) in order to project out the lowest state, which for large distance

corresponds to a meson-antimeson pair.

3. We work at relatively small quark mass (pion mass about 195 MeV). As emphasized

previously [2], the truncated determinant algorithmworks perfectly well at arbitrarily

small quark masses, as the convergence rate of the Lanczos algorithm used to extract

the low eigenvalues depends only on the density of the infrared spectrum and does

not dramatically deteriorate as we lower the quark mass.

The dynamical fermion algorithm used in this paper has been described in considerable

detail elsewhere [2] so we will merely summarize the basic features. The hermitian quark

Dirac operator has a completely gauge invariant spectrum which can therefore be gauge-

invariantly split into a set of infrared modes (up to some momentum cuto� large enough

to encompass the desired infrared virtual quark physics), while the ultraviolet modes are

very accurately modelled by a local gauge-invariant pure-gauge action [9] which for large

distance physics mainly results in a coupling renormalization. In the truncated determinant

algorithm (TDA), we perform a simulation of the theory including exactly all the infrared

eigenvalues in the quark determinant up to the chosen cuto� (for a detailed description of

this approach see [2]). The Lanczos technique used to extract the low eigenvalues does not
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su�er from rapidly increasing convergence time even at very low quark masses (in contrast

to HMC algorithms, where the quark inversions become prohibitively expensive in this

limit), so we are able to work essentially at kappa critical. Of course, string breaking is

expected to set in earlier for light dynamical quarks, so the TDA approach has a natural

advantage over other dynamicalQCD schemes for this problem. The other important feature

of the calculations described in this paper is the use of large coarse lattices with an O(a2)

improved gauge action to restore the rotational invariance of the measured static energies.

Speci�cally, we give results for simulations performed on 64 lattices with the improved action

S =3.7[1:0(plaq)+1:04(trt)], using the notation of [10]. Although there is considerable scale

uncertainty on such a course lattice, we estimate the lattice spacing for this theory is about

0.4 fm. We have performed the simulations at �=0.2050 corresponding to m� ' 195 MeV.

Preliminary results from these simulations have been reported earlier [11].

In Section 2 we describe the computational and statistical issues underlying our results.

Some further details of the computational load required by the TDA method are discussed.

We describe the equilibration of our con�gurations in the TDA simulations, and the autocor-

relation data underlying our error analysis are given. In Section 3 results for the correlators

of Wilson lines at Euclidean times 0.4, 0.8, and 1.2 fm (1,2 and 3 lattice spacings) are re-

ported. The attening of the static energy associated with string breaking is �nally visible

for T' 1 fm. In Section 4 we summarize our conclusions and indicate ongoing calculations.
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2 TDA Simulations on large coarse lattices

In the TDA approach to dynamical QCD, the quark determinant D(A) = det(5(D=(A) �

m)) � det(H) is gauge-invariantly split into infrared and ultraviolet parts

D(A) = DIR(A)DUV (A) (1)

by introducing a cuto� �cut on the absolute magnitude of the eigenvalues �i of the hermi-

tian Dirac operator H. These eigenvalues are gauge-invariant generalizations of the quark

o�shellness (i.e. for A! 0, �i !�
p
p2 +m2)) and the cuto� is chosen to include as much

as possible of the low energy structure of the unquenched theory while leaving the uctua-

tions of lnDIR(A) (which is included exactly in the Boltzmann measure of the simulation)

of order unity after each sweep updating all gauge links. Fortunately, this choice is possible

on lattices of large physical size as well as for light quark masses close to the critical value.

In the simulations reported in this paper, the cuto� �cut is chosen at about 420 MeV. On

the lattices generated this corresponds to including the lowest 840 eigenvalues of H. These

eigenvalues are extracted by a Lanczos procedure for each trial gauge con�guration gen-

erated using an improved gauge action and the new con�guration is then subjected to a

Metropolis accept/reject step based on the change in NavlnDIR(A) (we have used Nav=2

avors of degenerate light quarks in the simulations). Detailed balance in this procedure is

ensured by using a random link choice procedure in the pure gauge update step. We have

stored gauge con�gurations after ten combined gauge-update + metropolis determinant

accept/reject steps. (The metropolis step had a typical acceptance rate of 50%.)

The computational load in these simulations is completely dominated by the extraction

of the infrared quark eigenmodes (typically to seven or eight place accuracy). For example,

on a 64 lattice, the gauge update takes a few seconds while the calculation of DIR takes

about 9 minutes on an Athlon 650-MHz processor. The string breaking results reported in

Section 3 were performed on such a processor and required about 2.0 processor-months to

accumulate 1000 con�gurations once equilibration is reached.
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As mentioned previously, we work on coarse 64 lattices but with O(a2) improved gauge

action. Following Alford et al [10], we improve the gauge action with a single additional

operator, with coe�cients tuned to optimize rotational invariance of the string tension

S(U ) = �plaq
X

plaq

1

3
ReTr(1� Uplaq)

+ �trt
X

trt

1

3
ReTr(1 � Utrt) (2)

where \trt" refers to a 8 link loop of generic structure (+x,+y,+x,-y,-x,+y,-x,-y) (the

\twisted rectangle" of Ref[10]). With the choices �plaq=3.7, �trt=1.04�plaq, the quenched

static quark potential becomes a smooth function of lattice radial separation [10] even on

these very coarse lattices, with lattice spacing a ' 0.4 fm (for the unquenched theory). As

we do not improve the quark action, the lattice spacing quoted here is determined by match-

ing the initial linear rise of the string tension to a physical value. The results given below

show that the restoration of rotational invariance survives reasonably well the introduction

of the quark determinant, so that we have not found it necessary to retune the pure gauge

action.

To maximize our chances of seeing string breaking within the spatial limitations of the

lattices being used we have chosen a kappa value corresponding to a rather light pion,

namely �=0.2050, corresponding to a pion mass of about 195 MeV (or 0.39 in lattice units).

This does not seem to result in a serious loss of acceptance at the level of individual Monte

Carlo steps, but the equilibration process (starting from a quenched initial con�guration)

is de�nitely slower in comparison to TDA simulations performed with heavier quarks on

lattices of smaller physical size [2]. The sequence of infrared determinant values (speci�cally,

lnDIR(A)) generated in a TDA simulation starting from a quenched con�guration is shown

in Fig.1. It appears that about 7000 Monte Carlo sweeps were needed to reach equilibrium

(corresponding to about 1.5 650-MHz Athlon processor months). The results reported in the

next section were based on the 1000 saved con�gurations between sweeps 7000 and 169900

(see Figure 1).
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Figure 1: Equilibration of the quark determinant in TDA simulation of a coarse 64

lattice
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Figure 2: Typical autocorrelation curves of Wilson line correlators (R=1,3; T=3)
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Given the rather long times needed for equilibration, the issue of autocorrelation of mea-

sured quantities in the post-equilibrium con�gurations naturally assumes great importance.

We have performed a careful study of the decorrelation rate of all the Wilson line correlators

used to extract the static energy plots given in Section 3 below. Thus, if W (� ) is a Wilson

line correlator measured for the � 'th saved con�guration, an autocorrelation function can

be computed as the ensemble average

C(� ) �
X

n

(W (n+ � )W (n)� < W >2) (3)

The autocorrelation time can then be read o� from the exponential decay of C(� ). Typical

autocorrelation curves are shown in Figure 2, which shows the decorrelation of Wilson line

correlators spatially separated by 1 or 3 lattice units and of Euclidean time extent 3, mea-

sured on an ensemble of 300 successive saved con�gurations. For R = 1, an exponential �t

gives an autocorrelation time of 7.9 (in units of 10 Monte Carlo steps), while the area under

the autocorrelation curve gives 8.4 for the same quantity. For R = 3, the autocorrelation

time is of order unity (1.5, from an exponential �t). In general, autocorrelation times range

from about unity for the largest loops to on the order of 20 for the smallest. We have there-

fore assumed that line correlators from successive bins of 20 (or more) saved con�gurations

are e�ectively decorrelated for all relevant R and T .

We have calculated the standard light meson and baryon spectrum, the eta prime, and

the heavy-light mesons. We will report on these results in a future paper. The ground state

heavy light meson mass is relevant to the static energy analysis. As shown in Figure 3, a

consistent mass value was obtained for all the various �tting time windows. The mass �t

using T = 1� 5 was mHL = 0:811� :007.
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Figure 3: Various �ts to ground state heavy-light meson mass. The start time and
end time are represented as the decimal start.end

.

3 Static Energy Results

The static energy of a quark-antiquark pair is calculated using the Euclidean time evolution

of a color-singlet pair in Coulomb gauge. The relevant correlator is

W (~R; T ) =< �	(0; T )	(~R; T ) �	(~R; 0)	(0; 0) >coul (4)

where 	 is an in�nitely massive quark �eld and the correlator is evaluated in Coulomb

gauge. The static energy V (~R) is then de�ned as the energy of the lowest state coupled by

�	(~R; 0)	(0; 0) to the vacuum, i.e.

W (~R; T )! C exp (�TV (~R)); T !1 (5)

or equivalently

V (~R) � lim
T!1

ln
W (~R; T � 1)

W (~R; T )
(6)
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On the lattice the correlator (4) is evaluated as an ensemble average of Tr(L(0; T )Ly(~R; T )),

where L(~R; T ) is a Wilson line- i.e. a product of T adjacent link matrices in the temporal

direction at spatial location ~R. As mentioned previously, there is a distinct advantage to the

use of Coulomb gauge Wilson line correlators over Wilson loop expectations in the study

of stringbreaking e�ects. The Wilson loop necessarily involves additional contributions

from intermediate states containing transverse gluons which are absent in the Coulomb

gauge Wilson line correlators. In perturbation theory these states correspond to diagrams

in which gluons are exchanged between the top and bottom horizontal (i.e. �xed time)

portions of the Wilson loop. In quenched abelian theory, for example, the correlator (4) is a

pure exponential W (~R; T ) / e�V (R)T , whereas the corresponding Wilson loop expectation

is proportional to e�(V (R)T+V (T )R) implying the presence of excited states. It is therefore

reasonable to expect that stringbreaking in unquenched QCD will emerge more rapidly (i.e.

at smaller Euclidean times T ) if the Coulomb gauge correlator (4) is used.

Since the calculation is done on symmetrical 64 lattices, we actually obtain four sets of

correlators for each gauge con�guration, obtained by successively gauge�xing to Coulomb

gauge with the time direction chosen as each of the four original Euclidean spacetime di-

rections. Exploiting this degeneracy provides a valuable increase in the statistics, as we

e�ectively have an ensemble of 4000 correlators from the original set of 1000 gauge con�gu-

rations. The autocorrelation times described in the preceding section were obtained however

by preaveraging the four correlator sets coming from each con�guration.

In Figure 4 the static energy at T = 2 (circles) is compared with the similar results for

two other theories. First, we show (down triangles) the T = 2 static energy for the quenched

theory (with identical improved gauge action (2) but with the determinant contribution

switched o�), obtained from an ensemble of 8000 con�gurations, but otherwise analysed

identically to the dynamical con�gurations (the untuned quenched theory). Both a shift in

scale at short distances and the deviation at longer distances are clearly observed. Second,

the static energy at T = 2 for the original Alford et. al. [10] unquenched action is plotted
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Figure 4: Static energy from Wilson line correlator (T=2) for unquenched QCD and
quenched (untuned and tuned) QCD.

11



0 0.5 1 1.5 2 2.5 3

R/a

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
V

(R
)a

T=1
T=2
T=3

Figure 5: Static energy from unquenched QCD Wilson line correlators (T=1,2,3).
The calculated heavy-light meson pair threshhold is also indicated.

(up triangles). This curve was used to tune our action to obtain an approximately equal

initial slope.

In Figure 5 we show the static energy curves for T=1,2 and 3 in (6) respectively. For

comparison the heavy-light meson pair production threshhold is also shown. As we are

working on a large coarse lattice (lattice spacing a '0.4 fm) 3 temporal lattice spacings

already represents a fairly large Euclidean time T ' 1:2 fm and the signal to noise ratio

at larger spatial distances has clearly deteriorated substantially at T=3. The shortest time

evolution, T=1 shown in Fig(3), on the other hand is still contaminated by higher energy

states and the attening of the string tension is certainly not visible. However, at T=3 the

string tension appears to atten out convincingly for distances R >
�

1 fm (=2.5a). (Further

simulations are in progress to substantially reduce the statistical errors in this regime.)

Moreover, the smoothness of the potential curve within the statistical errors suggests that
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the improved action terms are doing a good job of restoring rotational invariance on this

very coarse lattice.

The errors in the static potential are obtained most simply by computing a separate

error on the line correlators W (~R; T ) and W (~R; T � 1) in (6), using the measured standard

deviation and an autocorrelation time extracted separately for every loop size R; T . The

errors for the log ratio in (6) can then be obtained by combining the numerator and denom-

inator errors in quadrature. This approach however almost surely yields an overestimate of

the true errors, as W (~R; T ) and W (~R; T � 1) tend to be positively correlated, reducing the

variance in the ratio. Line correlators extracted from individual con�gurations on a small

lattice tend to be extremely noisy (especially for the large loops of interest here) so to exam-

ine this correlation we have performed the error analysis by binning the 1000 con�gurations

into 40 sets of 25 consecutive con�gurations. The average line correlators in each bin are

then essentially decorrelated and a straightforward jackknife analysis can be performed on

the ratios in (6). This is the approach used to obtain the errors displayed in Figure 5.
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4 Conclusions

The analysis of dynamical two-avor con�gurations on large coarse lattices obtained by

the truncated determinant simulation method provides evidence for string breaking in zero

temperature 4-dimensional QCD. One clear advantage of the method essential for its success

in this case is the ability to generate a su�cient number of equilibrated and decorrelated

dynamical con�gurations even for light quark mass on a physically large lattice, where

standard HMC simulations would encounter computational problems. Evidently, as is the

case for QED2 [2], the infrared quark modes included in the determinant in the TDA contain

all the essential physics of string breaking.

Simulations on larger coarse lattices (84 lattices with the same action (2)) as well as at

di�erent kappa values for the two light quark avors are in progress. In particular, we hope

to study in detail the hairpin amplitudes relevant to the eta-prime mass. Here also, the

essential physics should be obtainable from amplitudes measured in a TDA simulation [11].
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